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Abstract

The path signature is a means of feature generation that can encode nonlinear interactions

in data in addition to the usual linear terms. It provides interpretable features and its output

is a fixed length vector irrespective of the number of input points or their sample times. In

this paper we use the path signature to provide features for identifying people whose diagno-

sis subsequently converts to Alzheimer’s disease. In two separate classification tasks we

distinguish converters from 1) healthy individuals, and 2) individuals with mild cognitive

impairment. The data used are time-ordered measurements of the whole brain, ventricles

and hippocampus from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We find

two nonlinear interactions which are predictive in both cases. The first interaction is change

of hippocampal volume with time, and the second is a change of hippocampal volume rela-

tive to the volume of the whole brain. While hippocampal and brain volume changes are well

known in Alzheimer’s disease, we demonstrate the power of the path signature in their iden-

tification and analysis without manual feature selection. Sequential data is becoming

increasingly available as monitoring technology is applied, and the path signature method is

shown to be a useful tool in the processing of this data.

Introduction

Alzheimer’s disease (AD) is an irreversible brain disorder which progressively affects cognition

and behaviour, and results in an impairment in the ability to perform daily activities. It is the

most common form of dementia in older people, affecting about 6% of the population aged

over 65, and it increases in incidence with age. The initial stage of AD is characterized by

memory loss, and this is the usual presenting symptom. Memory loss is one constituent of

mild cognitive impairment (MCI), a syndrome in which cognitive decline is greater than is

usual for an individual’s age and education level. MCI is diagnosed by complaints of subjective

memory loss (preferably corroborated by a close associate or partner of the individual),

impairment of memory function, unimpaired general cognition and behaviour, but with no

evidence of dementia [1]. A proportion of those diagnosed with MCI will ultimately receive a
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diagnosis of Alzheimer’s disease, with the yearly rate of progression varying between studies

and with the criteria used for defining MCI [2] [3]. In cases where an individual does develop

Alzheimer’s disease, the phase of MCI ends with a marked decline in cognitive function as the

disease pathology takes effect [1].

The disease leads to an irreversible loss of brain function so there has been much work on

predicting a diagnosis of Alzheimer’s disease using a variety of predictor variables. These stud-

ies are often motivated by the need to test drug therapies and for the identification of predic-

tive factors which might help in understanding the condition. Input variables for use with

machine learning methods may be derived from imaging—in particular structural magnetic

resonance imaging (MRI)—cognitive tests, physical biomarkers such as APOE4 status (a

known genetic risk factor), and demographic variables such as age and gender [4].

Our purpose is to apply the path signature, a mathematical tool for the selection of machine

learning features, to demonstrate its usefulness in a medical context. Time-ordered data is

becoming increasingly available as patient monitoring methods are applied using wireless

technologies, and it is commonly analysed using machine learning. Features for time-ordered

data are typically selected using ad-hoc approaches based on domain knowledge or using by

automatic methods based on subset selection or shrinkage [5]. However such approaches can

miss interactions between variables or the time ordering of events, features which can be be

both predictive and helpful in understanding a disease. Both cases are handled by the path sig-

nature, and we show how such interactions might then be interpreted in terms of physiology.

Path signatures have successfully been used in feature selection for modelling bipolar disorder

and borderline personality disorder [6] as well as other non-medical applications [7] [8]. In

this paper we use the path signature method to identify Alzheimer’s disease, and so demon-

strate the more general applicability of the method.

Subjects and methods

Our method is to distinguish two pairs of matched sets using time series sampled over a period

of 2 years. The first pair is made up of participants with Alzheimer’s disease vs. healthy partici-

pants, and the second comprises Alzheimer’s disease vs. MCI. In the training data, participants

in the AD set all have a first diagnosis of Alzheimer’s disease at 3 years. Participants in the

healthy and MCI sets each have their respective diagnoses from the start of monitoring until at

least until 6 years afterwards. We use ten-fold cross-validation on the training data to identify

the features that are important for prediction, and we evaluate the prediction accuracy on a

separate test data set.

Data sets

A number of competitions have been organized to identify predictors and methods for the

automatic diagnosis of Alzheimer’s disease: recent examples are CADDementia [9], the Kaggle

Neuroimaging Challenge [10], and the TADPOLE Grand Challenge [4]. Several data reposito-

ries are used for competitions and studies, the most comprehensive and widely used being the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [11]. ADNI is comprised of four phases:

ADNI-1 (2004), ADNI-GO (2009), ADNI-2 (2011), and ADNI-3 (2016). ADNI-1 registered

200 healthy elderly, 400 participants with MCI, and 200 participants with AD, and subsequent

phases continued to add participants. ADNI is led by Principal Investigator Michael W. Wei-

ner, MD; for up-to-date information see www.adni-info.org. Other large scale studies are the

Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) which started in 2016

[12], and the European AddNeuroMed collaboration, which was formed for the discovery of

novel biomarkers [13]. Overall, ADNI is the most highly cited although there are many other
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individual studies as well as initiatives which integrate different data sets. Weiner et al. [11]

lists 49 papers which use the ADNI data in machine learning. Most of these studies used the

support vector machine (SVM) as the learning method while three papers used random forests

[14–16]. A summary of machine learning for the automatic diagnosis of Alzheimer’s disease is

provided in [17]. ADNI data is the basis for the TADPOLE grand challenge https://tadpole.

grand-challenge.org/ which was completed in June 2019. For the classification tasks described

in this paper, we use the data from the TADPOLE grand challenge.

Features

Brain imaging methods can be used to derive features for predicting diagnosis either by analy-

sis of the whole brain (voxel-based morphometry) or by deriving features, especially the vol-

ume, from brain regions that change during the course of Alzheimer’s disease. Using ADNI

data, Schmitter et al. [18] found that volume-based morphometry achieved at least as good an

accuracy as voxel-based morphometry for classifying Alzheimer’s disease, MCI and controls.

Sørensen et al. examined the differential diagnosis of AD and MCI using features derived from

MRI and found that the most important MRI biomarkers were the hippocampal volume, ven-

tricular volume, hippocampal texture, and parietal lobe thickness. Using training data derived

from both the ADNI and AIBL studies, they took first place on the CADDementia challenge

with a multi-class classification accuracy of 63% [19]. A variety of features have been identified

as predictive of diagnosis: Westman et al. used the ADNI and AddNeuroMed data to examine

34 regional cortical thickness measures and 23 volume measures. They found in both cohorts

that the most important features were entorhinal cortex, hippocampus and amygdala volumes

[20].

Our earlier paper describes the selection of a number of features for predicting Alzheimer’s

disease [17]; the method took second place in the competition for the most accurate diagnosis

https://tadpole.grand-challenge.org/. In the current study we look beyond the predictive

potential of individual regions of interest to that of the relative change in their volumes. The

rationale for focusing on the change in relative volumes is that we can potentially detect atro-

phy in brain regions independently of age-dependent volume reduction. For simplicity we use

just three variables from which to derive features: the volumes of the hippocampus, ventricles

and whole brain. We include the hippocampus and ventricles volumes because these variables

are known to be predictive of diagnosis, and we include the volume of whole brain to find the

relative change of these brain regions in comparison.

Data

A total of 1737 participants from the TADPOLE data set are first split into those who have a

diagnosis of Alzheimer’s disease at some time (AD, n = 688), those who always have a healthy

diagnosis (NL, n = 424), and those who always have an MCI diagnosis (MCI, n = 484). Both

the training and test data is selected from these three sets, so we compare participants whose

diagnosis converts to Alzheimer’s disease with those whose diagnosis remains unchanged.

The training data is found by selecting participants with a first diagnosis of Alzheimer’s dis-

ease at 36 months from baseline (start of monitoring) and with at least four measurements of

all the variables WholeBrain, Hippocampus and Ventricles in the 24 months since baseline,

with a measurement at 24 months. Measurements in this period are available at 0, 3, 6, 12, 18

and 24 months; there are only a few measurements at month 3, which we exclude from the

analysis, and there is some missing data at 18 months. Each participant with Alzheimer’s dis-

ease must have matching counterparts in both the NL and MCI sets. For an individual with

an NL/MCI diagnosis to qualify as a counterpart they must match the age of the AD
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individual to within 5 years and their diagnosis must remain unchanged for the 72 months

since their first (baseline) measurement. The matching time series must also have at least four

measurement points up to month 24, again including a measurement at month 24. Sample

plots of the time series are shown in Fig 1 and characteristics of the sets selected for training

are shown in Table 1.

The participants in the test data are separate from those in the training data, but like the

training data they are formed into three subsets (AD, MCI and NL). The test data makes use of

time points starting from 12 months since the first baseline measurement. It comprises partici-

pants who have a first diagnosis of Alzheimer’s disease at 48 months (AD, n = 10), and partici-

pants with a healthy diagnosis (NL, n = 20) and a diagnosis of mild cognitive impairment

(MCI, n = 6) where the NL or MCI diagnosis is maintained for at least 84 months since base-

line. The NL and MCI subsets in the test data are not matched to the AD set since they would

not be matched in a real world use of the classifier. The measurements used for analysis are at

12, 24 and 36 months for all three sets (AD, NL, MCI), sample times which are different from

that for the training data, but the path signature generates the same length of feature vector in

either case.

Path signature

The path signature is a systematic way of providing feature sets for sequential data that can

encode nonlinear interactions in the data as well as giving linear features [7, 8]. Combined

with Lasso regularisation [21] it provides a set of features that can significantly improve the

inference when nonlinear interactions are important: since the signature encodes all time-

dependent interactions it can detect unforeseen relationships between variables. Second order

information has proved useful in some applications, for example in [6] where the method was

used to model bipolar disorder and borderline personality disorder.

The path signature was originally introduced by Chen [22] who applied it to piecewise

smooth paths, and it was further developed by Lyons and others [7, 23–26]. It is defined as fol-

lows: a path X through a spaceRd
is a continuous mapping from an interval [a, b] to Rd

. The

path is dependent on parameter t 2 [a, b], and can be written,

Xt ¼ fX1
t ;X

2
t ;X

3
t ; . . .Xd

t g ð1Þ

The kth-fold iterated integral of X is given by,

SðXÞi1 ;...ika;t ¼

Z

a<tk<t
. . .

Z

a<t1<t2

dXi1
t1

. . . dXik
tk ð2Þ

The path signature is a collection of all the iterated integrals of X,

SðXÞa;b ¼ ð1; SðXÞ
1

a;b; SðXÞ
2

a;b; SðXÞ
1;1

a;b; SðXÞ
1;2

a;b; . . .Þ ð3Þ

S(X)a,b is a series of real numbers, and the superscripts a, b are drawn from the set G of all

multi-indexes,

G ¼ fði1; . . . ; ikÞjk⩾ 1; i1; . . . ; ik 2 f1; . . . ; dgg ð4Þ

In effect the path signature transforms multivariate sequential data (which may have miss-

ing or irregularly sampled values) into a finite length series of real numbers which uniquely

represents a trajectory through Euclidean space. The length of the path signature depends on

the number of input variables and the degree, which is the order k of the highest order iterated

integral. So in two dimensions a path signature of degree two is S = {1, S(1), S(2), S(1,1), S(1,2),
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Fig 1. Sample plots by time (months) of scaled brain volumes for 6 participants. Diagnosis points are shown as diamonds at the base of each graph,

with a healthy diagnosis shown in green, MCI in yellow, and Alzheimer’s disease in red. In the top two graphs, the participants have a healthy diagnosis

throughout monitoring. In the middle two graphs the participants receive a diagnosis of Alzheimer’s disease 3 years after monitoring began. In the

bottom the two graphs, the participants have a diagnosis of mild cognitive impairment throughout monitoring. The scaled brain volumes are shown in

each graph from the top down as: whole brain (blue markers), hippocampus (red markers), and ventricles (yellow markers).

https://doi.org/10.1371/journal.pone.0222212.g001
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S(2,1), S(2,2)} while a path signature of degree 3 would include the terms S(1,1,1), S(1,1,2) etc.. A

more detailed introduction to the path signature which also gives a geometric interpretation of

the terms can be found in [8].

Example

An example path is shown in Fig 2 where the space is R2
and the variables are named X1 and

X2.

The first term of the path signature is always 1 by convention, and the next two terms are

S(1) = 8 and S(2) = 9 which are the increments in dimensions X1 and X2 respectively from the

start to the end of the path. The next term is S(1,1) = 32, which is equal to 1

2
ðSð1ÞÞ2. The cross

terms, S(1,2) = 31 and S(2,1) = 41, each represent areas between the actual path and a stepped

path as shown in Fig 3. The final term is S(2,2) = 40.5 which is equal to 1

2
ðSð2ÞÞ2.

It is apparent from the example that there is some redundancy in the path signature terms:

for example, S(1,1) is equal to 1

2
ðSð1ÞÞ2, and the shaded areas in Fig 3 are complementary. By

Table 1. Demographic, physical and genetic characteristics for the training data. The variables shown are the sample size n, age, gender, scaled medians(iqr) of MRI vol-

ume measurements at baseline, and APOE4 status. In the AD set, 19 participants transition from MCI, while 2 participants transition from a healthy diagnosis.

Healthy (NL) Alzheimer’s disease(AD) MCI (MCI)
n: 21 21 21

Age: min 65.1 64.6 60.7

mean 75.2 75.4 74.7

max 89.6 85.9 83.8

Gender M/F: 8/13 10/11 13/8

Wholebrain: 1.02 (0.13) 1.00 (0.12) 1.00 (0.12)

Hippocampus: 7.21 (1.23) 6.14 (1.41) 7.10 (0.89)

Ventricles: 28.53 (18.55) 34.34 (21.17) 33.88 (26.78)

APOE4 0: 81% 29% 71%

1: 19% 52% 29%

2: 0% 19% 0%

https://doi.org/10.1371/journal.pone.0222212.t001

Fig 2. Path of a trajectory throughR2 where X1 = {2, 4, 6, 8, 10} and X2 = {1, 2, 8, 9, 10}. The path signature of

degree 2 is {1, 8, 9, 32, 31, 41, 40.5}.

https://doi.org/10.1371/journal.pone.0222212.g002
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taking the logarithm in the formal power series shown above we obtain a more compact repre-

sentation, the log signature. In the example of Fig 2 the log signature is {8, 9, −5}. In this case

there is no leading 1, and the two terms with values 8 and 9 each represent the increment of

each variable as they do in the path signature. The next term has value −5 and it represents an

area term measuring the deviation from a straight line as shown in Fig 4. It is found from the

two areas between path and chord, and it is equal to the area below the chord minus the area

above the chord.

Fig 3. Geometric interpretation of the cross terms in the signature using the same path as in Fig 2. The graph on the left shows the shaded area

representing S(1,2) with value 31 and the graph on the right shows S(2,1) where the shaded area has a value of 41. These terms both measure the deviation

from a straight line and they distinguish cases where X1 increases quickly relative to X2 and vice versa.

https://doi.org/10.1371/journal.pone.0222212.g003

Fig 4. Geometric interpretation of an area term in the log signature. The term has an area equal to the upper shaded

region subtracted from the lower shaded region which in this example evaluates to -5. The log signature has a single

term for the area between the path and its chord whereas the signature uses two area terms. The log signature of degree

2 in this example is {8, 9, −5}.

https://doi.org/10.1371/journal.pone.0222212.g004
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Signature terms

The experiment in this paper uses four variables (1:WholeBrain, 2:Hippocampus, 3:Ventricles,

4:Time) and a path signature of degree two. The path signature and log path signature are

formed of the following sequences, where bracketed terms represent variables and their

combinations.

• Path signature: [1, (1), (2), (3), (4), (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2),

(3,3), (3,4), (4,1), (4,2), (4,3), (4,4)]

• Log path signature: [(1), (2), (3), (4), [1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]

For example the bracketed term (1) represents the increment of the Whole Brain volume,

and (2,3) is the area term for the Hippocampus vs. Ventricles path. For the log signature, the

term [2,3] is the area term for the Hippocampus vs. Ventricles path.

Machine learning

In machine learning tasks which use sequential data it is common to derive features from time

series [5] [27]. Time series representations are dependent on the sampling function, and pre-

diction methods usually assume regular sampling. The path signature representation makes no

such assumption; here we demonstrate its invariance to parameterization (in this case the

parameter is time), and its robustness to missing values. Fig 5 illustrates a simple path (the let-

ter ‘b’ on the top left) followed by some time series representations derived from it by sampling

X- and Y- coordinates at intervals. On the top right of the figure is shown the original time

series, generated by regular sampling of the pen position. The graphs on the bottom left and

bottom right of Fig 5 show a reparameterisation of the original time series obtained by simulat-

ing a change in drawing speed. While these time series graphs depend on the speed of the pen,

the path signature is computed directly from the original path using both variables X and Y.

This parameter invariance property was exploited in a recent project on recognising Chinese

handwriting which gave the most accurate results on two standard benchmarks [7].

In Fig 5 the speed of drawing is not important for recognising the shape, but in applications

where time is an independent variable, such as the diagnosis of Alzheimer’s disease, it can be

added to the space as another dimension in which the path can move. The robustness of path

signatures to irregular sampling can be seen from Fig 4 where the area does not depend on the

sampling regularity except in that additional samples may provide greater precision for the

path representation.

Implementing path signatures for machine learning is straightforward: a Python package

called esig is provided in the Python Package index https://pypi.org/project/esig/, and its asso-

ciated documentation explains how to derive the signature from input variables.

Classification

The training data is used to fit the model whose features we examine, and the test data is used

for error estimation. We classify the training data in two tasks, Alzheimer’s disease against a

healthy diagnosis (AD vs. NL), and Alzheimer’s disease against MCI (AD vs. MCI). For classifi-

cation we use binary logistic regression which models the log probabilities of the outputs as

linear functions of the inputs. We use logistic regression for classification because its function

can be easier to understand than more sophisticated machine learning methods such as the

random forest or neural network. Since the path signature encodes nonlinearity into the fea-

tures, a simple classifier can immediately reveal the importance of nonlinear effects. The input

features are selected using Lasso regularisation, a shrinkage method which subtracts an L1
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penalty from the negative log-likelihood when fitting the model. The complete feature vector

prior to selection is formed from the three variables, WholeBrain, Hippocampus and Ventri-

cles, concatenated with the path signature which is itself derived from these variables with

their time points. In the classification tasks below we show results for both for the path signa-

ture and the log path signature. In both cases the first 7 entries in the feature vector are the

same: the first 3 being the baseline values of the variables, entry 4 is the time increment

(approximately 24 months for all participants), and entries 5-7 are the increment of each of the

variables.

Classification is performed between the sets each containing 21 time series, with diagnosis

as the output variable. Training uses 10-fold cross-validation to find the graph of deviance

against the Lasso coefficient λ which determines the strength of regularisation. As the Lasso

coefficient increases, most of the variable coefficients shrink to zero, leaving a set of variables

which act as predictors.

Fig 5. Invariance of the path signature under time reparameterisation. Top left: a path generated by drawing the letter ‘b’ from the top down. Top right: original

time series generated by regular sampling of the X- and Y- coordinates of the path. Bottom left: speed increased at start of drawing. Bottom right: speed increased at the

end of drawing. In contrast to features derived from the time series, the signature uniquely characterizes the original path. The path signature of degree 2 is {1, −0.0013,

−0.0464, 0.0000, 0.0007, −0.0006, 0.0011}.

https://doi.org/10.1371/journal.pone.0222212.g005

Using path signatures to predict a diagnosis of Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0222212 September 19, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0222212.g005
https://doi.org/10.1371/journal.pone.0222212


Results and discussion

Training data

The training curves for the two classification tasks, AD vs. NL and AD vs. MCI, are shown in

Fig 6. As the value of the shrinkage parameter λ is increased (from right to left in each graph),

the variable coefficients shrink and the deviance decreases to a minimum and then begins to

increase. On each graph the value of λ at the minimum is marked by a green line to the right,

and the value within one standard deviation of the minimum deviance is shown as a blue line

on the left.

Fig 6. Training curves for classification of Alzheimer’s disease vs. a healthy diagnosis (left column) and Alzheimer’s disease vs. MCI (right column). The graphs on

the top row arise from when the path signature method is used to derive features, and the graphs on the bottom row from the log signature method. In each case the

graph shows the optimisation of the Lasso shrinkage parameter λ using 10-fold cross validation, where the value of λ increases from right to left. Deviance is a measure of

the estimate of the expected negative likelihood of the parameter applied to new data. The green circle and vertical line locate the minimum cross validation error, and

the blue circle and vertical line to the left locate the value of λ with minimum cross-validation error plus one standard deviation.

https://doi.org/10.1371/journal.pone.0222212.g006
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Table 2 shows the features that are selected at the point of minimum deviance plus one

standard deviation. When the path signature is used the following terms are selected for both

classification tasks (AD vs. NL and AD vs. MCI): the baseline hippocampus volume, the rate of

change in hippocampus volume, and the change in hippocampus volume relative to the whole

brain. Selection of the baseline hippocampus volume is unsurprising: inspection of Table 1

shows that the hippocampus is on average smaller for the AD set compared with the NL and

MCI sets. The selection of hippocampus shrinkage rate is consistent with the finding that hip-

pocampal atrophy is predictive of a diagnosis of Alzheimer’s disease [28]. More interestingly,

the second order term (Hippocampus, Wholebrain) is found to be predictive. This result most

likely reflects accelerated atrophy of the hippocampus relative to the whole brain volume for

people with Alzheimer’s disease.

Fig 7 shows the values of the (Hippocampus, Wholebrain) signature terms for both the Alz-

heimer’s disease and healthy sets as a bar chart. Time series from the Alzheimer’s disease set

have generally large positive values while those from the healthy set have smaller values which

are both positive and negative in sign. The figure also shows paths of the trajectory though the

hippocampus vs. wholebrain volume space, where a longer path in a consistent direction gives

a larger area value. Most participants in the Alzheimer’s disease set exhibit a decrease in both

hippocampus and whole brain volumes with time, in contrast to the healthy set. While this

trend might in principle be found from a combination of increment terms for the two vari-

ables, the area term encodes the information into a single feature. Whereas the increment

terms use only the first and last measurements, the area term uses all the samples in the path,

and it can distinguish different path trajectories such as when one variable changes before a

second variable.

For the log signature, the baseline volume of the hippocampus and the increments in hippo-

campus volume and ventricles volume are selected. The log signature finds fewer second order

terms and instead uses the incremental change in the hippocampus and ventricles size as pre-

dictors. We note however that using a linear classifier such as logistic regression with the log

Table 2. The set of variables selected by Lasso for classification of Alzheimer’s disease vs. a healthy diagnosis (left

column) and Alzheimer’s disease vs. MCI (right column). Highlighted rows show variables that are selected by both

classification tasks. The baseline value of a variable is denoted by the suffix _BL. First order terms such as (Incr. Ventri-

cles) denote the increment of a variable and second order terms such as (Hippocampus, Time) are area terms.

Highlighted rows show features selected in both classification tasks.

Alzheimer’s disease vs. Healthy Alzheimer’s disease vs. MCI
Signature

Hippocampus_BL Hippocampus_BL

Ventricles_BL

(Incr. Ventricles)

(Hippocampus, Time) (Hippocampus, Time)

(Hippocampus, Wholebrain) (Hippocampus, Wholebrain)

(Time, Ventricles)

(Hippocampus, Hippocampus)

Log signature
Hippocampus_BL Hippocampus_BL

Ventricles_BL

[Incr. Hippocampus] [Incr. Hippocampus]

[Incr. Ventricles] [Incr. Ventricles]

[Time, Ventricles]

https://doi.org/10.1371/journal.pone.0222212.t002
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signature is not optimal, because it requires a non-linear function to ‘unwrap’ the encoded

non-linearities. The training data is small, so some of the features might be due to minor dif-

ferences between the sets resulting from the selection process rather than from differences in

the sampled populations.

Fig 7. Area terms for the two sets of participants, Alzheimer’s disease and those who remain healthy, with their corresponding paths. The bar chart at the top

shows the value of the area (Hippocampus, Wholebrain) path signature term for each set. The graphs show the corresponding paths for each participant in the same

order as in the bar chart. The paths are in the scaled hippocampus vs. wholebrain space and ordered in time, with the first observation shown by a blue square and the

final observation shown by an arrow. Paths directed towards the north-east or south-west generate positive areas; those towards the north-west or south-east

correspond to negative areas. The set of participants with Alzheimer’s disease shows a consistent south-west direction in the trajectory; the healthy set has participants

with both positive and negative area terms and shows no general trend in the path trajectory.

https://doi.org/10.1371/journal.pone.0222212.g007
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Test data

For both classification tasks, Alzheimer’s disease vs. a healthy diagnosis, and Alzheimer’s dis-

ease vs. MCI, we train the model on the training data and estimate the error on the test data in

each case. The threshold for choosing the output class is estimated from the ROC curve, and

the output from the model is compared with this threshold to generate the binary output. The

confusion matrix for the test data prediction is shown in Table 3.

For the first task, Alzheimer’s disease vs. a healthy diagnosis, there are 10 participants in the

Alzheimer’s disease set and 20 in the healthy set, and of these just two are misclassified, one in

each set. For the second task Alzheimer’s disease vs. MCI there are there are 10 participants in

the Alzheimer’s disease set and 6 in the MCI set. In this case just one participant in the Alzhei-

mer’s disease set is misclassified, and all the participants in the MCI set are correctly identified.

The same result is found using either the signature or the log signature feature set. Without a

larger sample, the test accuracy cannot safely be generalized to other data. However, the high

accuracy on unseen test data is evidence that the model has not overfitted to the training data.

Discussion

The path signature has been used to encode interactions between variables to predict those

who will receive a diagnosis of Alzheimer’s disease after a period of 3 years. We found two

combinations of variable which distinguish both Alzheimer’s disease from healthy individuals,

and Alzheimer’s disease from individuals with MCI. These interactions are between the hippo-

campus volume and time, and between the hippocampus volume and whole brain volume. A

change in hippocampus volume with time is known to be predictive of a diagnosis of Alzhei-

mer’s disease. The importance of a relative change between the hippocampus volume and the

whole brain volume is interesting. Since some brain atrophy occurs in normal aging it is useful

to examine the relative change of brain regions, and the path signature approach is a principled

approach to this analysis. We examined the graphs of hippocampus volume vs. whole brain

volume to illustrate the way this ratio changes over time and show the effectiveness of the sig-

nature in providing a feature for prediction. Healthy participants show no systematic decline

in the two volumes, while those with Alzheimer’s disease often show a systematic downward

trend. The area terms clearly summarise this trend along with any nonlinearity in the path.

A major limitation of the analysis is the small selected sample size (n = 42) for both of the

classification experiments, so some of the selected features might be artifacts of the selection

procedure. The relatively small amount of data and a short period of monitoring is due in part

to the nature of the condition: Alzheimer’s disease progresses over decades, and to our knowl-

edge only the ADNI project has monitored large numbers of individuals over this period of

time. Another application of the method using the more recent ADNI-3 data would provide a

clearer assessment of the potential value of the method for this application.

The signature method generates interpretable nonlinear features and handles missing and

irregular sequential data. Manual feature selection can be used to identify known predictors

such as hippocampal and other brain volume changes. However, the path signature provides a

Table 3. Confusion matrices for classifying diagnoses in the test data. Left: Alzheimer’s disease vs. a healthy diagnosis. Right: Alzheimer’s disease vs. MCI. The labels

are as follows, NL: healthy, MCI: mild cognitive impairment, AD: Alzheimer’s disease.

Predicted Predicted
AD NL Total Accuracy AD MCI Total Accuracy

Actual AD 9 1 10 0.90 Actual AD 9 1 10 0.90

NL 1 19 20 0.95 MCI 0 6 6 1.00

https://doi.org/10.1371/journal.pone.0222212.t003
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systematic way of generating features from time series which can then be selected using

shrinkage or other automatic methods. While nonlinear classifiers such as neural nets and ran-

dom forests often provide accurate predictions, their function can be more difficult to under-

stand than simpler methods. By encoding nonlinearity into the features, we can use simpler

classifiers that give more interpretable results and relate feature importance to physiology.

Overall, sequential data is becoming increasingly available as monitoring technology is

applied, and the path signature method is a useful tool in the processing of this data.
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